National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Programmable nucleases in human therapy
Šlaufová, Marta ; Kašpárek, Petr (advisor) ; Černý, Jan (referee)
Most genome disorders cause severe symptoms and are usually incurable. Recent, rapid development of programmable nucleases (PNs) brought new possibilities for the treatment of many diseases, such as genetic disorders, infectious diseases or cancer. PNs are enzymes, which enable site specific DNA cleavage that can lead to targeted modification of desired genomic loci. They are composed of separable non-specific cleavage domain and DNA- binding domain. The DNA binding domain is in the form of modular DNA-binding proteins or complementarity-based pairing of the oligonucleotide. The non-specific cleavage domain mediates DSB stimulation, which is necessary for further genome editing. Development of zinc finger nucleases (ZFNs) followed by transcription activator-like effector nucleases (TALENs) enabled the first therapeutic approaches based on targeted manipulation of human genome. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas technology brought further simplification to the method and broadened the availability of PN-based toolkits. This thesis will provide a summary of the recent developments, application of PNs in the therapy of human patients and potential obstacles preventing their implementation in clinics.
Generation and analysis of double deficient transgenic mice for kallikrein-related peptidase 5 and kallikrein-related peptidase 14
Hanečková, Radmila ; Sedláček, Radislav (advisor) ; Fulková, Helena (referee)
Kallikrein-related peptidases (KLKs) constitute a highly conserved serine protease family. Based on in vitro experiments, KLKs are predicted to play an important role in a number of physiolog- ical and pathophysiological processes. However, their role in vivo remains not fully understood, partially due to a lack of suitable animal models. In this work, we aim to prepare a KLK5 and KLK14 double-deficient mouse model. Both KLK5 and KLK14 were proposed to be involved in epidermal proteolytic networks critical for maintaining skin homeostasis. However, both KLK5 and KLK14 single-deficient mouse models show minimal or no phenotype, likely due to similar substrate specificity resulting in functional compensation. Double-deficient mice cannot be easily obtained by crossing due to localization of the Klk5 and Klk14 genes within the same locus on chromosome 7. We report that KLK5 and KLK14 double-deficient mice were success- fully generated, mediated by transcription activator-like effector nucleases (TALENs) targeting Klk14 by microinjection of TALEN mRNA into KLK5-deficient zygotes. Furthermore, we show that KLK5 and KLK14 double-deficient mice are viable and fertile. We believe that these novel mouse models may serve as a useful experimental tool to study KLK5 and KLK14 in vivo.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.